A Two-Stage Attentive Network for Single Image Super-Resolution

نویسندگان

چکیده

Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and contribute remarkable progress. However, most of the existing CNNs-based SISR methods do not adequately explore contextual information feature extraction stage pay little attention to final high-resolution (HR) reconstruction step, hence hindering desired SR performance. To address above two issues, this paper, we propose a two-stage attentive network (TSAN) for accurate coarse-to-fine manner. Specifically, design novel multi-context block (MCAB) make focus on more informative features. Moreover, present an essential refined (RAB) which could useful cues HR space reconstructing fine-detailed image. Extensive evaluations four benchmark datasets demonstrate efficacy our proposed TSAN terms quantitative metrics visual effects. Code is available at https://github.com/Jee-King/TSAN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Single Image Super-Resolution

Image super-resolution is the task of obtaining a high-resolution (HR) image of a scene given low-resolution (LR) image(s) of the scene. In this project, we have focused on the task of super-resolution given a single LR image, which is usually the case. There exist many techniques in literature addressing this task, and we have considered two techniques having the essence of [1] and [2]. In fir...

متن کامل

GUN: Gradual Upsampling Network for single image super-resolution

—In this paper, we propose an efficient super-resolution (SR) method based on deep convolutional neural network (CNN), namely gradual upsampling network (GUN). Recent CNN based SR methods either preliminarily magnify the low resolution (LR) input to high resolution (HR) and then reconstruct the HR input, or directly reconstruct the LR input and then recover the HR result at the last layer. The ...

متن کامل

SRPGAN: Perceptual Generative Adversarial Network for Single Image Super Resolution

Single image super resolution (SISR) is to reconstruct a high resolution image from a single low resolution image. The SISR task has been a very attractive research topic over the last two decades. In recent years, convolutional neural network (CNN) based models have achieved great performance on SISR task. Despite the breakthroughs achieved by using CNN models, there are still some problems re...

متن کامل

Fast Single Image Super-Resolution

This paper addresses the problem of single image super-resolution (SR), which consists of recovering a high resolution image from its blurred, decimated and noisy version. The existing algorithms for single image SR use different strategies to handle the decimation and blurring operators. In addition to the traditional first-order gradient methods, recent techniques investigate splitting-based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology

سال: 2022

ISSN: ['1051-8215', '1558-2205']

DOI: https://doi.org/10.1109/tcsvt.2021.3071191